Progression to deep sleep is characterized by changes to BOLD dynamics in sensory cortices

نویسندگان

  • Ben Davis
  • Enzo Tagliazucchi
  • Jorge Jovicich
  • Helmut Laufs
  • Uri Hasson
چکیده

Sleep has been shown to subtly disrupt the spatial organization of functional connectivity networks in the brain, but in a way that largely preserves the connectivity within sensory cortices. Here we evaluated the hypothesis that sleep does impact sensory cortices, but through alteration of activity dynamics. We therefore examined the impact of sleep on hemodynamics using a method for quantifying non-random, high frequency signatures of the blood-oxygen-level dependent (BOLD) signal (amplitude variance asymmetry; AVA). We found that sleep was associated with the elimination of these dynamics in a manner that is restricted to auditory, motor and visual cortices. This elimination was concurrent with increased variance of activity in these regions. Functional connectivity between regions showing AVA during wakefulness maintained a relatively consistent hierarchical structure during wakefulness and N1 and N2 sleep, despite a gradual reduction of connectivity strength as sleep progressed. Thus, sleep is related to elimination of high frequency non-random activity signatures in sensory cortices that are robust during wakefulness. The elimination of these AVA signatures conjointly with preservation of the structure of functional connectivity patterns may be linked to the need to suppress sensory inputs during sleep while still maintaining the capacity to react quickly to complex multimodal inputs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered fMRI Connectivity Dynamics in Temporal Lobe Epilepsy Might Explain Seizure Semiology

Temporal lobe epilepsy (TLE) can be conceptualized as a network disease. The network can be characterized by inter-regional functional connectivity, i.e., blood oxygen level-dependent (BOLD) signal correlations between any two regions. However, functional connectivity is not constant over time, thus computing correlation at a given time and then at some later time could give different results (...

متن کامل

Attention to simultaneous unrelated auditory and visual events: behavioral and neural correlates.

The cognitive and neural bases of the ability to focus attention on information in one sensory modality while ignoring information in another remain poorly understood. We hypothesized that bimodal selective attention results from increased activity in corresponding sensory cortices with a suppression of activity in non-corresponding sensory cortices. In a functional magnetic resonance imaging (...

متن کامل

Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study.

To assess dynamic changes in brain function throughout the sleep-wake cycle, CBF was measured with H2(15)O and PET in 37 normal male volunteers: (i) while awake prior to sleep onset; (ii) during Stage 3-4 sleep, i.e. slow wave sleep (SWS); (iii) during rapid eye movement (REM) sleep; and (iv) upon waking following recovery sleep. Subjects were monitored polysomnographically and PET images were ...

متن کامل

Introduction of low to high frequencies bispectrum rate feature for deep sleep detection from awakening by electroencephalogram

Background: Accurate detection of deep sleep (Due to the low frequency of the brain signal in this part of sleep, it is also called slow-wave sleep) from awakening increases the sleep staging accuracy as an important factor in medicine. Depending on the time and cost of manually determining the depth of sleep, we can automatically determine the depth of sleep by electroencephalogram (EEG) signa...

متن کامل

Corticothalamic modulation during absence seizures in rats: a functional MRI assessment.

PURPOSE Functional magnetic resonance imaging (fMRI) was used to identify areas of brain activation during absence seizures in an awake animal model. METHODS Blood-oxygenation-level-dependent (BOLD) fMRI in the brain was measured by using T2*-weighted echo planar imaging at 4.7 Tesla. BOLD imaging was performed before, during, and after absence seizure induction by using gamma-butyrolactone (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 130  شماره 

صفحات  -

تاریخ انتشار 2016